Home Brands Products Deals Promo Codes Add Review Sign Up Login

Examples of Beneficial Microorganisms and What They Do

Knoji reviews products and up-and-coming brands we think you'll love. In certain cases, we may receive a commission from brands mentioned in our guides. Learn more.
What are examples of beneficial microorganisms? Here are four useful ones employed in natural farming.

Microorganisms may be beneficial or harmful. In agriculture or gardening, it is important that the farmer/hobbyist should strike a balance between these beneficial microorganisms and those which are harmful to succeed in growing crops. It will, however, be more desirable to enhance the growth of beneficial organisms for the sake of producing health foods.

Beneficial Microorganisms vs. Harmful Microorganisms

How will one be able to find out if the microorganism s/he is dealing with is beneficial or not? One way to find out is to see the outcome of its action on organic matter. Beneficial microorganisms cause fermentation while harmful or pathogenic microorganisms cause putrefaction. Fermentation is a process by which useful substances such as alcohol, amino acids, organic acids and antioxidants are produced. These substances are useful to man, plants, and animals. Putrefaction, on the other hand, is a process by which harmful substances such as hydrogen sulfide, foul smell due to mercaptan, ammonia, and oxidants are produced. Food poisoning can result from ingestion of these products.

Examples of Beneficial Microorganisms

What are examples of beneficial microorganisms? Among those beneficial microorganisms that are found in growing plants that are healthy for human consumption as well as in producing other useful products to man are the following:

1. Lactic acid bacteria

As the name connotes, lactic acid bacteria produce lactic acid, usually from sugars or other carbohydrates. Lactic acid is an important byproduct because it can act as a strong fertilizer, suppresses harmful microorganisms, increases rapid decomposition of organic matter, and ferments organic matter without the smell and other harmful outcomes (see tip on How to Prepare Lactic Acid Bacteria Serum).

2. Photosynthetic bacteria

Bacteria of this type can photosynthesize so they could survive on their own. Photosynthetic bacteria produce useful substances from otherwise harmful products like hydrogen sulfide. With the aid of sunlight, secretions from organic matter can also be turned into amino acids, nucleic acids, and bioactive substances that promote plant growth and development. Amino acids are building blocks of proteins. Nucleic acids are responsible for the synthesis of new protein. It allows transfer of the characteristics of an organism from one generation to another. Bioactive substances are substances which are important in the regulation of the function of both plants and animals. These include the hormones, enzymes, neurotransmitters, among others. 

3. Fermenting fungi

Fermenting fungi decompose organic matter rapidly to produce alcohol, esters and anti-microbial substances. These groups of microorganisms also suppress bad odors and prevent plant infestation by harmful insects and maggots. Examples are Aspergillus and Penicillium. The latter is a familiar source of the antibiotic Penicillin.

4. Yeasts

Yeasts produce substances that promote active cell division in the fast growing parts of the plants like the roots. A more extensive root system facilitates absorption of more water and nutrients from the soil that speed up plant growth. Greater surface area for photosynthesis is made available by growing numerous or wider leaves. Thus, more starch will be produced by the plant.

These beneficial microorganisms are the principal agents used in natural farming, a highly sustainable farming technique that brings back the lost properties of the soil. More can be learned about natural farming in "Facts About Natural Farming". Indigenous beneficial microorganisms can be produced by following the procedures in "How to Make a Concoction of Indigenous Microorganisms". 

References

Henriksen, J. H., 1991. Degradation of bioactive substances: physiology and pathophysiology. Retrieved on April 19, 2010.

Lim, A. K., 2005. Handout on natural farming system and technology seminar. Davao: Tribal Mission Foundation International, Inc.

Robinson, W. and S, Lotfi Seysan, n.d. General functions of nucleic acids. Retrieved on April 19, 2010.

6 comments

muhammad janneh
0
This comment has 0 votes  by
Posted on Dec 15, 2015
Guest
This comment has 0 votes  by
Posted on Nov 23, 2011
Guest
This comment has 0 votes  by
Posted on Aug 8, 2011
Guest
This comment has 0 votes  by
Posted on Aug 16, 2010
lisa leverton
0
This comment has 0 votes  by
Posted on Apr 22, 2010
Johnny Dod
0
This comment has 0 votes  by
Posted on Apr 19, 2010